A targeted reweighting method for accelerating the exploration of high-dimensional configuration space.

نویسندگان

  • R I Cukier
  • M Morillo
چکیده

Time scales available to biomolecular simulations are limited by barriers among states in a high-dimensional configuration space. If equilibrium averages are to be computed, methods that accelerate barrier passage can be carried out by non-Boltzmann sampling. Barriers can be reduced by modifying the potential-energy function and running dynamics on the modified surface. The Boltzmann average can be restored by reweighting each point along the trajectory. We introduce a targeted reweighting scheme where some barriers are reduced, while others are not modified. If only equilibrium properties are desired, trajectories in configuration space can be generated by Langevin dynamics. Once past a transient time, these trajectories guarantee equilibrium sampling when reweighted. A relatively high-order stochastic integration method can be used to generate trajectories. The targeted reweighting scheme is illustrated by a series of double-well models with varying degrees of freedom and shown to be a very efficient method to provide the correct equilibrium distributions, in comparison with analytic results. The scheme is applied to a protein model consisting of a chain of connected beads characterized by dihedral angles and the van der Waals interactions among the beads. We investigate the sampling of configuration space for a model of a helix-turn-helix motif. The targeted reweighting is found to be essential to permit the original all-helical conformation to bend and generate turn structures while still maintaining the alpha-helical segments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transient Two-Dimensional (r-z) Cyclic Charging/Discharging Analysis of Space Thermal Energy Storage Systems (RESEARCH NOTE)

A two-dimensional transient axi-symmetric model was developed to study the effects of various thermal and geometric parameters on cyclic heating and cooling modes of a phase-change thermal energy storage system. The high-temperature thermal energy storage device utilizes LiH for heat sink applications to store the waste heat generated during power-burst periods. The stored heat is then discharg...

متن کامل

CONFIGURATION OPTIMIZATION OF TRUSSES USING A MULTI HEURISTIC BASED SEARCH METHOD

Different methods are available for simultaneous optimization of cross-section, topology and geometry of truss structures. Since the search space for this problem is very large, the probability of falling in local optimum is considerably high. On the other hand, different types of design variables (continuous and discrete) lead to some difficulties in the process of optimization. In this articl...

متن کامل

Calculation of One-dimensional Forward Modelling of Helicopter-borne Electromagnetic Data and a Sensitivity Matrix Using Fast Hankel Transforms

The helicopter-borne electromagnetic (HEM) frequency-domain exploration method is an airborne electromagnetic (AEM) technique that is widely used for vast and rough areas for resistivity imaging. The vast amount of digitized data flowing from the HEM method requires an efficient and accurate inversion algorithm. Generally, the inverse modelling of HEM data in the first step requires a precise a...

متن کامل

Accelerating Magnetic Resonance Imaging through Compressed Sensing Theory in the Direction space-k

Magnetic Resonance Imaging (MRI) is a noninvasive imaging method widely used in medical diagnosis. Data in MRI are obtained line-by-line within the K-space, where there are usually a great number of such lines. For this reason, magnetic resonance imaging is slow. MRI can be accelerated through several methods such as parallel imaging and compressed sensing, where a fraction of the K-space lines...

متن کامل

Accelerating the Requirement Space Exploration through Coarse-Grained Parallel Execution

The design and analysis of complex systems need to determine suitable configurations for meeting requirement constraints. The Monotonic Indices Space (MIS) method is a useful approach for monotonic requirement space exploration. However, the method is highly time and memory-Consuming. Aiming to the problem of low efficiency of sequential MIS method, this paper introduces a coarse-grained parall...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 123 23  شماره 

صفحات  -

تاریخ انتشار 2005